Sergey M. Desenko*, Evgeny S. Gladkov, Svetlana V. Shishkina and Oleg V. Shishkin
The Institute of Single Crystals,
UA-61001 Kharkov, Ukraine
Sergey A. Komykhov and Valery D. Orlov
Kharkov National University, Department of Organic Chemistry, UA-61077 Kharkov, Ukraine,

Herbert Meier
University of Mainz, Institute of Organic Chemistry,
D-55099 Mainz, Germany
Received February 7, 2006

The condensation of 5-amino-4-phenyl-1,2,3-triazole (1) with chalcones 2a-e or 3-dimethylaminopropiophenone (4f) leads to the 6,7 -dihydro-(1,2,3)-triazolo[1,5- a]pyrimidines 3a-f. The equilibrium of $\mathbf{3}$ and the tautomeric 4,7-dihydro-(1,2,3)-triazolo[1,5-a]pyrimidines $\mathbf{3}^{\prime}$ is described.
J. Heterocyclic Chem., 43, 1563 (2006).

In continuation of our study of the synthesis and tautomerism of dihydroazolopyrimidines [1] with a nodal nitrogen atom we investigated some 6,7-dihydro-($1,2,3$)-triazolo[1,5-a]pyrimidines. The formation of derivatives of this heterocyclic ring system in the cyclocondensation reaction of 4-amino-1,2,3-triazoles and arylideneacetoacetic esters was reported [2]. Although these compounds have interesting properties as calcium antagonists/agonists [2], the number of known heterocycles of this type is very low [2,3]. That is even more surprising, since many examples of the corresponding benzo condensed ring systems, the (1,2,3)triazolo[1,5-a]quinazolines, are known [4].

The most common method for the synthesis of dihydroazolopyrimidines is the cyclocondensation of aminoazoles with α, β-unsaturated carbonyl compounds or Mannich bases [1]. We used now the cyclization reaction of 5-amino-4-phenyl-1,2,3-triazol (4-amino-5-phenyl-1,2,3triazol) $\mathbf{1}$ with the chalcones $\mathbf{2 a - e}$ to yield the 3,5,7-triaryl-6,7-dihydro-(1,2,3)-triazolo[1,5-a]pyrimidines 3ae. Compound $3 f$ was obtained in a corresponding reaction of 1 and the hydrochloride of the Mannich base 4 which can be regarded as an enone precursor. All cyclization processes were performed in boiling DMF.

The compounds 3a-f were characterized by spectroscopic methods. The IR spectra in KBr contained typical bands of coupled stretching vibrations of CC and CN
double bonds at $1590-1610 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectra of 3a-e in CDCl_{3} (Table 1) showed, besides the signals for the aromatic protons, an aliphatic $A B X$ spin system; for $\mathbf{3 f}$ an AA'MM' spin system was found.

Scheme 1

3a-f

$\mathbf{3}$	R^{1}	R^{2}	Yield [\%]	m.p. $\left[{ }^{\circ} \mathrm{C}\right]$
\mathbf{a}	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	76	$168-170$
\mathbf{b}	$\mathrm{C}_{6} \mathrm{H}_{5}$	Cl	73	$178-180$
c	$\mathrm{C}_{6} \mathrm{H}_{5}$	OCH_{3}	55	$238-239$
d	$4-\mathrm{H}_{3} \mathrm{CO}_{-}-\mathrm{C}_{6} \mathrm{H}_{5}$	H	45	$187-191$
e	$4-\mathrm{Cl}_{5}-\mathrm{C}_{6} \mathrm{H}_{5}$	H	30	$221-223$
f	H	H	57	$168-170$

Table 1
${ }^{1} \mathrm{H}$ NMR Data of 3a-f in CDCl_{3} (δ values, TMS as internal standard)

Compound	6-H		7-H	${ }^{2} J_{\mathrm{AB}}[\mathrm{Hz}]$	${ }^{3} J_{\mathrm{BX}}[\mathrm{Hz}]$	${ }^{3} J_{\mathrm{AX}}[\mathrm{Hz}]$	ArH	OCH_{3}
	A	B	X					
3a	3.60	3.52	5.99	-17.4	7.9	4.4	7.10-8.40	
3b	3.53	3.48	5.96	-14.0	6.5	5.8	7.05-8.35	
3c	3.58	3.47	5.97	-17.2	7.2	4.7	6.95-8.40	3.87
3d	3.58	3.50	5.93	-17.1	7.6	4.9	6.80-8.37	3.74
3 e	3.58	3.52	5.97	-13.3	7.0	5.7	7.05-8.40	
3 f	3.32 ($\mathrm{AA}{ }^{\text {) }}$		4.63 (MM')				7.30-8.33	

Table 2
${ }^{1} \mathrm{H}$ NMR data of $\mathbf{3}$ (')a-g in $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$ (δ values related to TMS as internal standard)

Compound	$6-\mathrm{H}$		$7-\mathrm{H}$	ArH	Other signals
3a	3.78	3.75	6.18	$7.15-8.30$	
3'a	5.29		6.56	-	
3b	3.79	3.71	6.15	$7.16-8.29$	
3'b	5.35		6.57	-	
3c	3.68	3.77	6.15	$7.05-8.32$	3.83 3d
	3.73	3.71	6.09	$6.90-8.28$	3.70
3'd	5.25		6.49	-	$\left(\mathrm{OCH}_{3}\right)$
					3.70
3e	3.80	3.74	6.19	$7.21-8.29$	$\left(\mathrm{OCH}_{3}\right)$
3'e	5.28		6.61	-	
3f	3.44		4.64	$7.32-8.25$	
3'g	5.33		6.58	$7.28-7.64$	$8.5\left(\mathrm{NH}^{2}\right)$,
					$7.2\left(\mathrm{NH}_{2}\right)$

The measurement in $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$ (Table 2) revealed for $\mathbf{3 a}, \mathbf{b}, \mathbf{d}, \mathbf{e}$ the presence of minor components $\mathbf{3} \mathbf{a} \mathbf{a}, \mathbf{b}, \mathbf{d}, \mathbf{e}$. The AB spin systems at $5.25-5.35$ and $6.49-6.61 \mathrm{ppm}$ indicated the enamine tautomers $\mathbf{3}^{\prime}$ (Scheme 2). The noticeable population of tautomer 3^{\prime} in $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$ in contrast to the solution in CDCl_{3} illustrates the effect of the relative stabilization of the enamine form by a strong solvation. In particular, the formation of intermolecular $\mathrm{N}-\mathrm{H} . . . \mathrm{O}-\mathrm{S}$ hydrogen bonds has to be examined. The ${ }^{13} \mathrm{C}$ NMR data of 3a-f are summarized in Table 3. The signal assignment was based on DEPT measurements.

A comparison of the obtained results to literature data of related dihydro derivatives of (1,2,4)-triazolo[1,5-a]pyrimidines $\mathbf{5} \rightleftarrows \mathbf{5}^{\prime}$, which exist predominantly or exclusively in the enamine form $5^{\prime}[1,11,12]$), led to a conclusion about the essential influence of the nature of the azole ring on the ratio of tautomers (Scheme 2).
The shift of the tautomeric equilibrium to the enamine form 5^{\prime} (Table 4) is based, in our opinion, on the increase of the electron-acceptor effect of the π-system in the azole ring.

Table 3
${ }^{13} \mathbf{C}$ NMR data of 3a-f and 3'g (δ values related to TMS as internal standard)

Compound	Solvent	C-3, C-3a	C-5	C-6	C-7	Aromat. CH	C_{q}	other
3a	CDCl_{3}	138.1,140.0	164.4	33.4	56.2	126.0, 126.8, 127.4,	136.8	
						128. 1, 128.6, 128.8,	128.8	
						128.9, 129.4, 131.9	130.8	
3b	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	138.1, 138.4	165.7	32.7	55.2	125.9, 126.3, 127.9,	136.9	
						128.3, 128.8, 128.9,	135.1	
						129.0, 129.3	130.6	
							137.1	
3c	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	137.3, 138.6	165.9	32.4	55.5	114.2, 125.7, 126.2,	128.8	55.1
						127.7, 128.3, 128.8,	130.9	$\left(\mathrm{OCH}_{3}\right)$
						128.8, 129.6	137.4	
							162.5	
3d	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	137.1, 137.9	166.7	32.7	55.0	114.2, 125.8, 127.4,	136.3	54.8
						127.5, 127.7, 128.6,	130.7	$\left(\mathrm{OCH}_{3}\right)$
						128.7, 131.9	130.3	
							159.1	
3 e	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	137.3, 138.0	166.7	32.6	54.6	125.9, 127.5, 127.9,	130.6	
						127.9, 128.4, 128.8,	133.0	
						128.9, 132.1	136.2	
							137.4	
3 f	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	136.7, 137.5	167.0	24.5	40.5	125.7, 127.3, 127.6,	130.8,	
						128.6, 128.7, 131.7	136.5	
3'g	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	122.8, 138.0	141.4	97.1	58.6	125.4, 126.8, 126.9,	133.7,	163.7
						128.3, 128.7, 129.1	133.8	$\left(\mathrm{CONH}_{2}\right)$

Scheme 2

3

5

3^{\prime}

Table 4
Ratio of Tautomers 3a-3e / 3'a-3'e and 5a-c,f / 5'a-c,f in $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$ Solution

	R^{1}	R^{2}	$\mathbf{3}: \mathbf{3}^{\prime}$	$\mathbf{5}: \mathbf{5}^{\prime}$
	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	$85: 15$	$-:: 100$
\mathbf{a}	$\mathrm{C}_{6} \mathrm{H}_{5}$	Cl	$100:-$	$-: 100$
\mathbf{b}	$\mathrm{C}_{6} \mathrm{H}_{5}$	OCH_{3}	$100:-$	$-: 100$
\mathbf{c}	$4-\mathrm{H}_{3} \mathrm{CO}^{2}$	H	$90: 10$	
\mathbf{d}	$\mathrm{C}_{6} \mathrm{H}_{5}$			
	\mathbf{e}	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{5}$	H	$90: 10$
\mathbf{f}	H	H	$100:-$	$15: 85$

A relative stabilization of the enamine form $\mathbf{3}^{\prime}$ may be expected for the introduction of substituents that permit the formation of intramolecular hydrogen bonds. We synthesized therefore 5,7-diphenyl-4,7-dihydro-1,2,3triazolo $[1,5-a]$ pyrimidine-3-carboxamide ($\mathbf{3}^{\prime} \mathbf{g}$) (Scheme 3). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{' g}$ in $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$ (Table 2) showed - apart from the signals of aromatic rings and amide protons - an AX spin system of the dihydropyrimidine ring. Thus, the presence of the carboxamide group led to the total shift of the tautomeric equilibrium to the 4,7-dihydro form 3'. (Scheme 3).
In principle, the structure of the compound $\mathbf{3} \mathbf{\prime} \mathrm{g}$ was confirmed by an X-ray diffraction study (Figure 1, Tables 57). In the crystalline state however, an intramolecular hydrogen bond is not present. The comparably long $\mathrm{O}(1)$ -

Scheme 3

1 g
$\mathbf{3}^{\prime} \mathbf{g}\left(\mathrm{mp} 235-237^{\circ} \mathrm{C}\right)$
$\mathrm{C}(18)$ bond of $1.232 \AA$ results from a corresponding intermolecular hydrogen bond [$\mathrm{H}^{\circ} \mathrm{O}^{\prime} 2.08 \AA, \mathrm{~N}(1)-\mathrm{H}^{\cdots} \mathrm{O}^{\prime} 161^{\circ}$].

The triazolopyrimidine fragment and the atoms $\mathrm{C}(18), \mathrm{O}(1)$ and $\mathrm{N}(5)$ are co-planar within a deviation of $0.02 \AA$. The planarity of the dihydropyrimidine ring does not conform with the general principles of conformational analysis of six-membered dihydroheteroaromatic rings $[14,15]$. Earlier studies revealed, that 4,7-dihydro-(1,2,4)-triazolo[1,5-a]pyrimidines, which bear a substituent in 7-position, have a boat conformation in the crystalline state [16-18]; a fairly planar structure was only found for 4,7-dihydro-5-phenyl-(1,2,4)-triazolo[1,5-a]pyrimidine [19]. The planar structure of $\mathbf{3} \mathbf{\prime} \mathbf{g}$ in the crystal may be caused by two reasons: either significant strengthening of the conjugation between enamine fragment and 1,2,3triazole ring as compared to the 1,2,4-triazole ring system or the influence of intermolecular interactions in the crystal. The bond length $\mathrm{N}(1)-\mathrm{C}(1)$ in $\mathbf{3} \mathbf{g}$ does not indicate a conjugation interaction between the π-system of the triazole ring and the enamine fragment. Therefore, intermolecular interactions in the crystal are the most probable reason of the flattening of the dihydropyrimidine ring in molecule $\mathbf{3}^{\prime} \mathbf{g}$.

The phenyl substituent on $\mathrm{C}(3)$ is turned relative to the plane of the bicyclic fragment (the $\mathrm{N}(4)-\mathrm{C}(3)$ -$\mathrm{C}(12)-\mathrm{C}(13)$ torsion angle amounts to $\left.43.9(2)^{\circ}\right)$. The phenyl substituent on $\mathrm{C}(5)$ is not in conjugation with the $\mathrm{C}(4)-\mathrm{C}(5)$ double bond; the $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)$ torsion angle is $107.5(2)^{\circ}$ and the $\mathrm{C}(5)-\mathrm{C}(6)$ bond length amounts to $1.492(2) \AA$ as compared to $1.488 \AA$, the mean value for such bond lengths in non-conjugated systems [20]). Tables 5-7 summarize the atomic coordinates, bond lengths and selected bond angles of the obtained crystal structure.

Figure 1. Molecular structure of $3^{\prime} \mathrm{g}$ in crystal.

Table 5
Atomic coordinates [$10^{4} \AA$] and equivalent isotropic thermal parameters for non-hydrogen atoms in the structure $\mathbf{3 ' g}$.

Atom	X / a	Y / b	Z / c	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$507(1)$	$6518(2)$	$4888(1)$	$42(1)$
$\mathrm{N}(1)$	$919(1)$	$2420(3)$	$5619(1)$	$35(1)$
$\mathrm{N}(2)$	$2276(1)$	$5127(3)$	$5323(1)$	$37(1)$
$\mathrm{N}(3)$	$2572(1)$	$3426(3)$	$5618(1)$	$40(1)$
$\mathrm{N}(4)$	$2083(1)$	$2266(3)$	$5744(1)$	$32(1)$
$\mathrm{N}(5)$	$1358(1)$	$8414(3)$	$4724(1)$	$46(1)$
$\mathrm{C}(1)$	$1477(1)$	$3257(3)$	$5527(1)$	$29(1)$
$\mathrm{C}(2)$	$1599(1)$	$5090(3)$	$5252(1)$	$28(1)$
$\mathrm{C}(3)$	$2241(1)$	$227(3)$	$6071(1)$	$31(1)$
$\mathrm{C}(4)$	$1585(1)$	$-561(3)$	$6132(1)$	$35(1)$
$\mathrm{C}(5)$	$993(1)$	$492(3)$	$5937(1)$	$32(1)$
$\mathrm{C}(6)$	$397(1)$	$-129(3)$	$6097(1)$	$30(1)$
$\mathrm{C}(7)$	$63(1)$	$-2165(4)$	$5962(1)$	$41(1)$
$\mathrm{C}(8)$	$-455(1)$	$-2727(4)$	$6156(1)$	$49(1)$
$\mathrm{C}(9)$	$-634(1)$	$-1290(5)$	$6488(1)$	$53(1)$
$\mathrm{C}(10)$	$-306(1)$	$753(5)$	$6620(1)$	$58(1)$
$\mathrm{C}(11)$	$201(1)$	$1334(4)$	$6421(1)$	$45(1)$
$\mathrm{C}(12)$	$2758(1)$	$701(3)$	$6610(1)$	$32(1)$
$\mathrm{C}(13)$	$2715(1)$	$2595(4)$	$6896(1)$	$47(1)$
$\mathrm{C}(14)$	$3172(1)$	$2966(5)$	$7396(1)$	$60(1)$
$\mathrm{C}(15)$	$3678(1)$	$1422(5)$	$7611(1)$	$64(1)$
$\mathrm{C}(16)$	$3720(1)$	$-491(5)$	$7334(1)$	$69(1)$
$\mathrm{C}(17)$	$3262(1)$	$-845(4)$	$6834(1)$	$49(1)$
$\mathrm{C}(18)$	$1111(1)$	$6738(3)$	$4939(1)$	$31(1)$

Table 6
Bond Lengths $[\AA \AA]$ in the structure $\mathbf{3 ' g}^{\prime} \mathbf{g}$.

$\mathrm{O}(1)-\mathrm{C}(18)$	$1.232(2)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.363(2)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.398(2)$	$\mathrm{N}(2)-\mathrm{N}(3)$	$1.301(2)$
$\mathrm{N}(2)-\mathrm{C}(2)$	$1.365(2)$	$\mathrm{N}(3)-\mathrm{N}(4)$	$1.362(2)$
$\mathrm{N}(4)-\mathrm{C}(1)$	$1.342(2)$	$\mathrm{N}(4)-\mathrm{C}(3)$	$1.462(2)$
$\mathrm{N}(5)-\mathrm{C}(18)$	$1.331(2)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.379(3)$
$\mathrm{C}(2)-\mathrm{C}(18)$	$1.459(3)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.505(2)$
$\mathrm{C}(3)-\mathrm{C}(12)$	$1.518(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.329(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.492(2)$	$\mathrm{C}(6)-\mathrm{C}(11)$	$1.377(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.378(3)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.384(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.366(3)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.375(3)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.378(3)$	$\mathrm{C}(12)-\mathrm{C}(17)$	$1.374(3)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.375(3)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.383(3)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.371(3)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.370(4)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.383(3)$		

Table 7
Selected Bond Angles [${ }^{\circ}$] of $\mathbf{3 ' g}^{\prime} \mathbf{g}$

$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	$118.2(2)$	$\mathrm{N}(3)-\mathrm{N}(2)-\mathrm{C}(2)$	$109.8(2)$
$\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{N}(4)$	$107.0(1)$	$\mathrm{C}(1)-\mathrm{N}(4)-\mathrm{N}(3)$	$110.6(2)$
$\mathrm{C}(1)-\mathrm{N}(4)-\mathrm{C}(3)$	$127.9(2)$	$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(3)$	$121.5(1)$
$\mathrm{N}(4)-\mathrm{C}(1)-\mathrm{N}(1)$	$120.4(2)$	$\mathrm{N}(4)-\mathrm{C}(1)-\mathrm{C}(2)$	$105.1(1)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$134.4(2)$	$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$107.6(2)$
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(18)$	$124.6(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(18)$	$127.8(2)$
$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{C}(4)$	$106.6(1)$	$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{C}(12)$	$111.6(2)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(12)$	$110.2(2)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$125.1(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	$121.6(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$122.0(2)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$115.9(2)$	$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)$	$118.8(2)$
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(5)$	$118.4(2)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$122.6(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$120.1(2)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$120.6(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$119.5(2)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120.0(2)$
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	$120.8(2)$	$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)$	$118.6(2)$
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(3)$	$119.8(2)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(3)$	$121.5(2)$

Table 7 (continued)

$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$121.1(2)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$119.6(2)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$119.9(2)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$120.1(2)$
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	$120.7(2)$	$\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{N}(5)$	$124.0(2)$
$\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{C}(2)$	$119.5(2)$	$\mathrm{N}(5)-\mathrm{C}(18)-\mathrm{C}(2)$	$116.6(2)$

EXPERIMENTAL

The melting points, determined on a Kofler apparatus, are uncorrected. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker AM 400 in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$ with TMS as internal standard. The IR spectra were obtained in KBr pellets with a Specord 75 IR spectrometer. The EI mass spectra (70 eV) and FD mass spectra were recorded on a Finnigan M 95 spectrometer.

6,7-Dihydro-3,5,7-triphenyl-(1,2,3)-triazolo[1,5-a]pyrimidine (3a).
A mixture of 0.32 g (2.0 mmoles) of 5-amino-4-phenyl-1,2,3triazole (1, [22]) and $0.42 \mathrm{~g}(2.0 \mathrm{mmoles})$ of $\mathbf{2 a}$ in 0.2 mL of DMF was refluxed for 0.5 h . The reaction mixture was cooled to $20{ }^{\circ} \mathrm{C}, 5 \mathrm{~mL}$ of methanol was added and the precipitate formed was filtered and recrystallized from methanol. Compound 3a ($0.53 \mathrm{~g}, 76 \%$) melted at $168-170{ }^{\circ} \mathrm{C}$. The EI MS spectrum showed peaks at $m / z(\%): 350(37)\left[\mathrm{M}^{+} \cdot\right], 219$ (100), 115 (28), 103 (25).

Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4}$ (350.4): $\mathrm{C}, 78.83 ; \mathrm{H}, 5.18 ; \mathrm{N}$, 15.99. Found: C, $78.62 ; \mathrm{H}, 5.47$; N, 15.86.

The compounds $\mathbf{3 b}$-e were prepared as described for $\mathbf{3 a}$.
5-(4-Chlorophenyl)-6,7-dihydro-3,7-diphenyl-(1,2,3)-triazolo-[1,5-a]pyrimidine (3b).

The compound was obtained in a yield of 73% and melted at 178-180 ${ }^{\circ} \mathrm{C}$. The EI MS spectrum showed peaks at $m / z(\%)$: $384(25) / 386(8)\left[\mathrm{M}^{+}, \mathrm{Cl}_{1}\right.$ isotope pattern], 253 (100), 218 (49), 191 (37), 140 (90), 137 (41), 116 (31), 115 (76).

Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{Cl}$ (384.9): C, 71.78 ; $\mathrm{H}, 4.45$; N , 14.56. Found: C, 71.57 ; H, 4.62; N, 14.29.

6,7-Dihydro-5-(4-methoxyphenyl)-3,7-diphenyl-(1,2,3)-triazolo-[1,5-a]pyrimidine (3c).

The compound was obtained in a yield of 55% and melted at 238-239 ${ }^{\circ} \mathrm{C}$. The FD MS spectrum showed the molecular ion at $m / z(\%): 380$ (100) [$\left.\mathrm{M}^{+}\right]$.

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$ (380.4): C, 75.77; H, 5.30; N , 14.73. Found: C, $75.85 ; \mathrm{H}, 5.58 ; \mathrm{N}, 14.45$.

6,7-Dihydro-7-(4-methoxyphenyl)-3,5-diphenyl-(1,2,3)-triazolo-[1,5-a]pyrimidine (3d).

The compound was obtained in a yield of 45% and melted at 187-191 ${ }^{\circ} \mathrm{C}$. The EI MS spectrum showed peaks at m / z (\%): 380 (99) [$\left.\mathrm{M}^{+\cdot}\right], 351$ (100).

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$ (380.4): C, 75.77 ; $\mathrm{H}, 5.30$; N , 14.73. Found: C, $75.54 ; H, 5.51 ; ~ N, ~ 14.52$.

7-(4-Chlorophenyl)-6,7-dihydro-3,5-diphenyl-(1,2,3)-triazolo-[1,5-a]pyrimidine (3e).

The compound was obtained in a yield of 30% and melted at 221-223 ${ }^{\circ} \mathrm{C}$. The FD MS spectrum showed the molecular ion at $m / z(\%): 384(100) / 386(36)\left[\mathrm{M}^{+}, \mathrm{Cl}_{1}\right.$ isotope pattern].

Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{Cl}$ (384.9): C, 71.78 ; $\mathrm{H}, 4.45$; N , 14.56. Found: C, 71.66 ; H, 4.35; N, 14.21 .

6,7-Dihydro-3,5-diphenyl-(1,2,3)-triazolo[1,5-a]pyrimidine (3f).
The compound was prepared in an analogous procedure; 0.32 g (2.0 mmoles) of $\mathbf{1}$ and 0.43 g (2.0 mmoles) of $\mathbf{4}$ yielded $0.31 \mathrm{~g}(57 \%)$ of product that melted at $168-170{ }^{\circ} \mathrm{C}$. The EI MS spectrum showed peaks at $m / z(\%): 274(100)\left[\mathrm{M}^{+}\right], 243$ (68).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4}$ (274.3): C, 74.43; H, 5.14; N, 20.42. Found: C, 74.18 ; H, 5.31; N, 20.12.

The compounds 3a-f exhibit in KBr an IR band at 1600 ± 10 cm^{-1} which is typical for the coupled stretching vibrations of CC and CN double bonds.

4,7-Dihydro-5,7-diphenyl-(1,2,3)-triazolo[1,5-a]pyrimidine-3carboxamide ($\mathbf{3}^{\prime} \mathbf{g}$).

A mixture of 0.25 g (2.0 mmoles) of 5-amino-1,2,3-triazole-4carboxamide ($\mathbf{1 b},[14])$ and 0.42 g (2.0 mmoles) of 2a in 0.2 mL of DMF was refluxed for 15 min . The reaction mixture was cooled to $20^{\circ} \mathrm{C}, 5 \mathrm{~mL}$ of methanol was added and the precipitate formed was filtered and recrystallized from methanol. Compound $\mathbf{3 ' g}(0.35 \mathrm{~g}$, 55%) melted at $235-237^{\circ} \mathrm{C}$. The EI MS spectrum showed peaks at $\mathrm{m} / \mathrm{z}(\%): 317$ (40) $\left[\mathrm{M}^{+}\right], 289$ (18), 271 (12), 260 (25), 240 (40), 184 (85), 157 (35), 103 (60), 77 (100).
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$ (317.3): C, 68.13; H, 4.76; N, 22.07. Found: C, $68.41 ;$ H, 7.92 ; N, 22.21.

Crystal structure analysis of $\mathbf{3} \mathbf{\prime} \mathbf{g}$.
The crystals of $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$ are monoclinic. At 293 K : $\mathrm{a}=$ 20.905(4), $\mathrm{b}=5.905(1), \mathrm{c}=26.758(6) \AA, \beta=109.13(2)^{\circ}, \mathrm{V}=$ $3121(1) \AA^{3}$, space group $C 2 / \mathrm{c}, \mathrm{Z}=8, \mathrm{~d}_{\text {calc }}=1.351 \mathrm{gcm}^{-3}, \mu=0.089$ $\mathrm{mm}^{-1}, \mathrm{~F}(000)=1328$. Intensity of 2795 reflections (2718 independent, $\mathrm{R}_{\mathrm{int}}=0.178$) was measured on an automatic fourcircle Siemens P3/PC diffractometer (graphite monochromated MoK_{α} radiation, $\Theta / 2 \Theta$ scanning, $2 \Theta_{\text {max }}=50^{\circ}$). The structure was solved by direct method using SHELX 97 package [23]. Positions of hydrogen atoms were located from electron density difference maps and refined by the "riding" model with $\mathrm{U}_{\text {iso }}=1.2 \mathrm{U}_{\text {eq }}$. Fullmatrix least-squares refinement against F2 in anisotropic approximation using 2718 reflections was converged to $\mathrm{R} 1=0.038$ (for 1583 reflections with $\mathrm{F}>4 \sigma(\mathrm{~F})$), wR2 $=0.104, \mathrm{~S}=0.965$.

Acknowledgement

We are grateful to DAAD for financial support.

REFERENCES AND NOTES

[*] Author to whom correspondence should be addressed
[1] S. M. Desenko, Khim. Geterotsikl. Soedin. 147 (1995); Chem. of Heterocycl. Compd. (Engl. Transl.) 31, 125 (1995).
[2] Y. Tsuda, T. Mishina, M. Obata, K. Araki, J. Inui, T. Nakamura, Yoshitomi Pharmaceutical Industries, Ltd, US Patent 4,918,074 (1990); Chem. Abstr., 114, 81873j (1991); Jap. Patent 63,107,983 (1988); Chem. Abstr., 109, 129063w (1988).
[3] Z.-T. Huang, M.-X. Wang, J. Org. Chem., 57, 184 (1992).
[4] For the corresponding (1,2,3)-triazolo[1,5-a]quinazolines see references [5-10].
[5] P. Jones, M. Chambers, Tetrahedron 58, 9973 (2002) and references therein.
[6] T. C. Porter, R. K. Smalley, M. Teguichi, B. Purwono, Synthesis, 773 (1997).
[7] G. Biagi, I. Giorgi, O. Livi, V. Scartoni, S. Velo, Fármaco, 51, 131 (1996).
[8] D. L. Hooper, W. H. Manning, R. J. Lafrance, K. Vaughan, Can. J. Chem., 64, 250 (1986).
[9] D. R. Sutherland, G. Tennant, J. Chem. Soc. Perkin Trans. 1, 534 (1974).
[10] G. Tennant, J. Chem. Soc., C 2290 (1960).
[11] V. D. Orlov, S. M. Desenko, K. A. Potekhin, Y. T. Struchkov, Khim. Geterotsikl. Soedin., 229 (1988); Chem. of Heterocycl. Compd. (Engl. Transl.), 24, 192 (1988).
[12] S. M. Desenko, V. D. Orlov, V. V. Lipson, O. V. Shishkin, S. V. Lindeman, Y. T. Struchkov, Khim. Geterotsikl. Soedin., 1539 (1991); Chem. of Heterocycl. Compd. (Engl. Transl.), 27, 1242 (1991).
[13] D. R. Sutherland, G. Tennant, J. Chem. Soc. C, 2156 (1971).
[14] O. V. Shishkin, A. S. Polyakova, S. M. Desenko, V. D. Orlov, S. V. Lindeman, Y. T. Struchkov, Izv. Akad. Nauk, Ser. Khim., 1009 (1994); Chem. Abstr., 122, 105024b (1995).
[15] O. V. Shishkin, S. M. Desenko, V. D. Orlov, S. V. Lindeman, Y. T. Struchkov, A. S. Polyakova, E.I.Mikhedkina, Izv. Akad. Nauk, Ser. Khim., 1418 (1994); Chem. Abstr., 122, 105027e (1995).
[16] O. V. Shishkin, N. V. Getmansky, S. M. Desenko, V. D. Orlov, S. V. Lindeman, Y. T. Struchkov, Izv. Akad. Nauk, Ser. Khim., 42, 1912 (1993); Russ. Chem. Bull., 42, 1827 (1993).
[17] S. M. Desenko, V. D. Orlov, O. V. Shishkin, K. E. Barykin, S. V. Lindeman, Y. T. Struchkov, Khim. Geterotsikl. Soedin., 1357 (1993); Chem. Heterocycl. Compd. (Engl. Transl.), 29, 1163 (1993).
[18] V. D. Orlov, S. M. Desenko, K. A. Potekhin, Y. T. Struchkov, Khim. Geterotsikl. Soedin., 229 (1988,); Chem. Heterocycl. Compd. (Engl. Transl.), 24, 192 (1988).
[19] S. M. Desenko, V. D. Orlov, V. V. Lipson, O. V. Shishkin, S. V. Lindeman, Y. T. Struchkov, Khim. Geterotsikl. Soedin., 1539 (1991); Chem. Heterocycl. Compd. (Engl. Transl.), 27, 1242-1246 (1991).
[20] H.-B. Burgi, J. D. Dunitz Structure Correlation, Vol. 2, p. 741 VCH, Weinheim, 1994.
[21] Y. V. Zeforov, P. M. Zorky, Uspekhi Khimii 713 (1989); Russ. Chem. Rev., 58, 421 (1989).
[22] J. R. E. Hoover, A. R. Day, J. Am. Chem. Soc., 78, 5832 (1956).
[23] G.M. Sheldrick SHELX97. PC Version. A system of computer programs for the crystal structure solution and refinement. Rev 2. (1998).

